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Abstract. Calculations of the production rate of particles with x > 1 in nuclear collisions due to the
interaction of colour strings are presented. Momentum and colour sum rules are used to determine the
fragmentation functions of fused strings. Mechanisms of the string interaction are considered with total
and partial overlapping in the transverse plane. The results reveal a strong dependence of the chosen
mechanism. In the percolation scenario with partial overlapping the x-dependence of the production rates
agrees well with the existing data. The magnitude of the rates for π+ production is in agreement with
experiment. However the rates for the protons are substantially below the data.

1 Introduction

Production of particles in nuclear collisions in the kine-
matical region prohibited in the free nucleon kinematics
(“cumulative particles”) has long aroused interest both
from the theoretical and pragmatic points of view. On the
pragmatic side, this phenomenon, in principle, allows one
to raise the effective collision energy far beyond the nom-
inal accelerator one. This may turn out to be very impor-
tant in the near future, when all possibilities to construct
still more poweful accelerator facilities become exhausted.
Of course one should have in mind that the production
rate falls very rapidly above the cumulative threshold, so
that to use the cumulative effect for practical purposes
high enough luminosities are necessary. On the theoretical
side, the cumulative effect explores the hadronic matter at
high densities, when two or more nucleons overlap in the
nucleus. Such dense clusters may be thought to be in a
state which closely resembles a cold quark–gluon plasma.
Thus cumulative phenomena could serve as an alternative
way to produce this new state of matter.

There has never been a shortage of models to describe
the cumulative phenomena, from the multiple nucleon
scattering mechanism to repeated hard interquark inter-
actions [1]. However it should be acknowledged from the
start that the cumulative particle production is at least in
part a soft phenomenon. So it is natural to study it within
the models which explain successfully soft hadronic and
nuclear interactions in the non-cumulative region. Then
one could have a universal description of particle pro-
duction in all kinematical regions. The non-cumulative
particle production is best described by the colour string
models, in which it is assumed that during the collisions
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colour strings are stretched between the partons of collid-
ing hadrons (or nuclei), which then decay into more strings
and finally into observed produced hadrons

It is clear that if the strings are formed independently
for different partons, all the cumulative effect can be gen-
erated exclusively by the partonic movement. This can
lead to cumulative particles due to the Fermi motion of
the nucleons in the participant nuclei. However in all re-
alistic nuclear models the Fermi motion generates cumu-
lative particles only in the region immediately above the
cumulative threshold. Beyond the threshold the effect dies
so quickly that there is absolutely no hope to explain by
the Fermi motion the experimentally known production
rates at x ∼ 2 ÷ 3. Thus in the string models the cumula-
tive effect is related to the interaction between strings, in
particular, to their fusion, which creates strings of higher
energy and thus of a longer length in rapidity. A model
of string fusion and their percolation was proposed by the
authors some time ago [2]. It proved to be rather successful
in explaining a series of phenomena related to collective
effects among the produced strings, such as damping of
the total multiplicity and strange baryon enhancement.
Calculations of the production rates in the cumulative re-
gion made by the Monte Carlo algorithm allowing for fu-
sion of only two strings gave encouraging results [3]. They
agree quite well with the existing data for hA collisions at
Ecm = 27.5GeV [4,5]. However to pass to higher energies
and heavy-ion collisions one has to consider the possibil-
ity of interaction of many strings. In this note we study
such an interaction using a simplified model in which both
colour and energy-momentum conservation are imposed
on the average.

From the start it is not at all obvious that the colour
string approach may give reasonable results in the deep
fragmentation region, near the kinematical threshold. The
string picture has been introduced mainly to describe par-
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ticle production in the central region, where its results
agree with the data very well. It turned out however that
it gives a quite reasonable description of the pion produc-
tion also in the fragmentation region. The baryon spectra
in the nucleus fragmentation region, on the contrary, are
very poorly described, which circumstance is standardly
ascribed to the interaction between nucleons as a whole
[6]. So, moving still further into the cumulative region, we
may only expect a reasonable description for the produc-
tion of pions, and not of baryons. As we shall see from our
results, this is indeed so. We get a very reasonable descrip-
tion of the pion production rates for 1 < x < 2 at 27.5GeV
[5] but we are not able to describe the proton rates, which
are experimentally two orders of magnitude greater than
our predictions. Obviously the bulk of cumulative protons
come from a different mechanism, which does not involve
colour string formation but rather interactions of nucleons
as a whole. Such a mechanism was included in the Monte
Carlo code of [3], which is the reason why it gave results
for nucleon production in agreement with the experimen-
tal data.

2 The model

The fully extended string model assumes that each of
the colliding hadrons consists of partons (valence and sea
quarks), distributed both in rapidity and transverse space
with a certain probability, deduced from the experimen-
tally known transverse structure and certain theoretical
information as to the behaviour of the x-distributions at
x = 0 and x = 1. These distributions are taken to be the
ones for the endpoints of the generated strings. As a result,
the strings acquire a certain length in rapidity. We shall
choose the c.m. system for the colliding hadrons with the
nucleus (projectile) moving in the forward direction. The
cumulative particles thus will be observed in the forward
hemisphere.

Let a parton from the projectile carry a part x1+ of the
“+” component of its momentum p1 and a partner parton
from the target carry a part x2− of the “−” component
of its momentum p2. The total energy squared for the
colliding pair of nucleons is

S = 2p1+p2− = m2eY , (1)

where m is the nucleon mass and Y is the total rapidity
available. The c.m. energy squared accumulated in the
string is then

s = x1+x2−S. (2)

Note that the concept of a string makes only sense in the
case when s is not too small, say more than m2. So both
x1+ and x2− cannot be too small. We have

x1+, x2− > xmin = m/
√
S = e−Y/2. (3)

Correspondingly we relate the scaling variables for the
string endpoints to their rapidities by

y1 = Y/2 + lnx1+, y2 = −Y/2 − lnx2−. (4)

Due to (3) y1 ≥ 0 and y2 ≤ 0. The “length” of the string
is just the difference y1 − y2.

Standardly it is assumed that the spectrum of observed
particles generated by the string is nearly a constant along
its length and zero outside. Due to the partonic distri-
bution in x the strings have different lengths and more-
over can take different positions with respect to the center
y = 0. The sea distribution in a hadron is much softer than
the valence one. In fact the sea distribution behaves as 1/x
near x = 0, so that the average value of x for sea partons is
of the order 1/Y (see (3)). As a result, strings attached to
sea partons in the projectile nucleus carry very small parts
of longitudinal momentum in the forward direction, which
moreover fall with energy, so that they seem to be useless
for building up the cumulative particles. This allows us
to retain only strings attached to valence partons, quarks
and diquarks, in the projectile and neglect all strings at-
tached to sea quarks altogether. Note that the number of
the former is exactly equal to 2A and does not change
with energy. So for a given nucleus we shall have a fixed
number of strings, independent of the energy.

The upper end rapidities of the strings attached to di-
quarks are usually thought to be larger than the ones of
those attached to the quarks, since the average value of x
for the diquark is substantially larger than for the quark.
Theoretical considerations lead to the conclusion that as
x → 1 the distributions for the quark and diquark in the
nucleon behave as (1−x)3/2 and (1−x)−1/2 respectively,
modulo logarithms [6]. Neglecting the logarithms and tak-
ing also in account the behaviour at x → 0 we assume that
these distributions are

q(x) =
8
3π

x−1/2(1 − x)3/2, (5)

for the quark and

qq(x) = q(1 − x) =
8
3π

x3/2(1 − x)−1/2. (6)

The quark and diquark strings will be attached to all
sorts of partons in the target nucleon: valence quark and
diquark and sea quarks. Their positions in rapidity in the
backward hemisphere will be very different. However we
are not interested in the spectrum in the backward hemi-
sphere. So, for our purpose, limiting ourselves with the
forward hemisphere, we may take lower ends of the strings
all equal to xmin << 1. As a result, in our model at the
start we have N initially created strings, half of them at-
tached to quarks and half to diquarks, their lower ends in
rapidity all equal to

y2 = Y/2 + lnxmin

and their upper ends distributed in accordance with (5)
and (6). As soon as they overlap in the transverse space
they fuse into new strings with more colour and more en-
ergy. This process will be studied in the next section.
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3 String fusion and conservation laws

3.1 Complete fusion

Let n strings overlap completely in the transverse area
and form a new string of higher colour. The process of
fusion obeys two conservation laws: those of colour and
momentum. As a result of the conservation of colour, the
colour of the fused string is n1/2 higher than that of the
ordinary string [7,8]. From the four momentum conserva-
tion laws we shall be interested mostly in the conservation
of the “+” component, which leads to the conservation
of x. The fused string will have the upper endpoint with
xn =

∑n
i=1 x

(i), where x(i) are upper ends of fusing strings
(we omit the subscripts “1+”, since we shall be interested
only in these variables in the future).

These properties of the fused string transform into cer-
tain sum rules which restrict the possible form of the spec-
trum of produced hadrons. Let us first assume that only
one sort of particles is produced and let the mutiplicity
density (“fragmentation function” in the terminology of
[6]) of the fused string be

τn =
dµn

dy
,

where µ is the multiplicity. As mentioned, the total num-
ber of particles produced in the forward hemisphere by the
fused string should be n1/2 greater than by the ordinary
string. This leads to the multiplicity sum rule:

∫ xn

xmin

dx
x
τn(x) =

1
2
µ0

√
n, (7)

where we denote by µ0 the total multiplicity from a simple
string. The produced particles have to carry all the longi-
tudinal momentum in the forward direction. This results
in the sum rule for x:∫ xn

xmin

dxτn(x) = xn. (8)

In these sum rules xmin is given by (3) and is small. Passing
to the scaled variable z = x/xn we rewrite the two sum
rules as ∫ 1

zn

dz
z
τn(z) =

1
2
µ0

√
n, (9)

and ∫ 1

zn

dzτn(z) = 1, (10)

where
zn = xmin/xn. (11)

These sum rules put severe restrictions on the form of
the distribution τn, which obviously cannot be indepen-
dent of n. Comparing (7) and (8) we see that the spec-
trum of the fused string has to vanish at its upper thresh-
old faster than for the simple string. In the scaled variable
z it is shifted to smaller values (and thus to the central
region). This must have a negative effect on the formation

of cumulative particles produced at the extreme values of
x.

To proceed, we choose a simplest form for the distri-
bution τn:

τn(z) = an(1 − z)αn−1. (12)

The x sum rule relates an and αn:

an = αn(1 − zn)−αn � αn. (13)

The multiplicity sum rule finally determines αn:

αn(1 − zn)−αn

∫ 1

zn

dz
z

(1 − z)αn−1 =
1
2
µ0

√
n. (14)

This equation can easily be solved when zn → 0. We
represent the integral in (14) as

∫ 1

zn

dz
z

[(1 − z)αn−1 − 1] + ln
1
zn

. (15)

The integral term is finite at zn = 0 so that we can write it
as a difference of integrals in the intervals [0, 1] and [0, zn].
The first can be found exactly

I1 =
∫ 1

0

dz
z

[(1 − z)αn−1 − 1]

= lim
ε→0

∫ 1

0
dzz−1+ε[(1 − z)αn−1 − 1]

= lim
ε→0

[
B(αn, ε) − 1

ε

]
= ψ(1) − ψ(αn). (16)

The second term has an order −(αn − 1)zn and is small
unless αn grows faster than n, which is not the case as
we shall presently see. In fact we shall find that αn grows
roughly as n1/2, which allows to neglect the second factor
in (14) and rewrite it in its final form

αn

[
ln

1
zn

+ ψ(1) − ψ(αn)
]

=
1
2
µ0

√
n. (17)

Obviously αn grows as n1/2, modulo a logarithmic depen-
dence, as mentioned. To finally fix the distributions we
have to choose the value of α for the simple string. We
take the simplest choice α1 = 1 for an average string with
x = x0 = 1/2, which corresponds to a completely flat
spectrum and agrees with the results of [6]. This fixes the
multiplicity density for the average string

τ1(y) = 1, (18)

which favorably compares to the value 1.1 extracted from
the experimental data [8].

With (18) we find from (17)

1
2
µ0 = ln

1
z0
, z0 =

xmin

x0
, (19)

and (17) can be rewritten as

αn

[
ln

n

z0
+ ψ(1) − ψ(αn)

]
=

√
n ln

1
z0
. (20)
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One concludes that at S → ∞ the solution is αn =
n1/2. However this is modified by logarithmic terms when
n is high enough: n ∼ S1/2/m. At finite S (20) can be
solved numerically for αn

In any case, we find that with the growing n the spec-
trum of produced particles goes to zero at z → 1 more
and more rapidly. So although strings with large n pro-
duce particles with large values of x ≤ xn, the production
rate is increasingly small.

3.2 Partial fusion

Now we pass to a more difficult case when two or more
strings only overlap partially. This case corresponds to
weaker interaction between strings, which retain their form
in the transverse space. This case lies at the basis of the
percolation phenomenon. To start, let us note that for two
or several completely independent strings the conservation
laws and the following sum rules are automatically satis-
fied if they are satisfied for each string individually. As
a consequence the case of partially fusing strings has to
be treated differently depending on whether we consider a
formed cluster as a single string or as a set of many strings
formed by the various areas where a fixed number of par-
ticular strings overlap. In the first case we have to impose
a single pair of conservation laws for the whole cluster. In
the second case we find many pairs of conservation laws
for strings formed by different overlaps.

An approach which admits the most direct physical
interpretation is to consider a cluster of nc strings as a
set of many independent “ministrings” formed by different
overlaps. This case corresponds to the minimal interaction
between strings, which actually only superimpose in the
transverse space without changing any of their properties.
In this case the conservation laws and sum rules have to be
imposed for each particular overlap. If the area of a given
overlap of n strings is S

(i)
n , where i enumerates different

overlaps of n strings, then the colour of the corresponding
ministring is [8]:

Q(i)
n =

√
n
S

(i)
n

C1
Q0, (21)

where Q0 is the colour if the simple string and C1 is its
area. As a result, the total multiplicity will be changed
correspondingly. Passing to the momentum, we have to
assume some manner in which the total x = xc of the
cluster is distributed among various ministrings formed by
overlaps. A natural way (similar to the one used for the
distribution of colour) is to assume that the part of the
longitudinal momentum shared by a string in a particular
overlap is proportional to the area of the latter. Then the
total x of the overlap is

x(i)
n = xc

nS
(i)
n

ncC1
. (22)

where nc is the number of strings forming the cluster.
Indeed, since ∑

i,n

nS(i)
n = ncC1, (23)

we have for each cluster∑
i,n

x(i)
n = xc, (24)

as we should. Introducing for each individual overlap its
scaled variable z = x/x

(i)
n we shall write the momentum

sum rule in the same form (10) as before. The multiplicity
sum rule will now read

∫ 1

z
(i)
n

dz
z
τn(z) =

1
2
µ0

√
n
S

(i)
n

C1
, (25)

where

z(i)
n = xmin/x

(i)
n .

With the choice (12) the final equation for αn will take
the form

αn

[
ln

1

z
(i)
n

+ ψ(1) − ψ(αn)
]

= ln
1
z0

√
n
S

(i)
n

C1
. (26)

Obviously calculations cannot be done analytically now
but require numerical simulation. They are found to be
very time consuming, since one has to identify each par-
ticular overlap in each cluster.

A simpler alternative is to treat the whole cluster as a
single string of a complicated form and area Cn, with prop-
erties intermediate between n separate strings and com-
pletely fused ones. This implies a considerable amount of
interaction between strings, which redistributes the colour
and momentum homogeneously over the cluster area. Let
the cluster of n strings have the total x equal to xc. How-
ever the maximal momentum xn of the emitted particle
cannot be equal to xc, since for n separate strings just
touching each other it is only x1. So it should be interme-
diate between x1 and xc, depending on the fusion inten-
sity. A natural choice seems to be

xn = xc
C1

Cn
. (27)

In fact for n independent strings Cn = nC1 and xn =
xc/n, which is just an average of the maximal momenta
of fusing strings. For n completely fused strings Cn = C1
and xn = xc as it should. The momentum sum rule is then∫ xn

xmin

dxτn(x) = xc. (28)

Taking
z =

x

xn
, τ =

xc

xn
τ̃ , (29)

we obtain an equation for τ̃ of the same form as (25)
with zn = xmin/xn. The total multiplicity will be also
intermediate between the multiplicity of n independent
strings and of the completely fused string. A reasonable
choice similar to (27) is [9]

µc = µ0

√
n
Cn

C1
. (30)
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This will lead to the corresponding change in the multi-
plicity sum rule, which in terms of z and τ̃ becomes

∫ 1

zn

dz
z
τ̃n(z) =

1
2
µ0

√
n
C1

Cn
. (31)

For n independent strings (31) goes over into (7) with
n = 1. For complete overlapping, when Cn = C1, (30)
reproduces (7). With the choice (12) for the distribution
in rapidity we now get an equation for αC

αC

[
ln

1
zn

+ ψ(1) − ψ(αC)
]

= ln
1
z0

√
n
C1

Cn
. (32)

This equation has to be solved separately for each cluster,
so that the form of the distribution of particles produced
by a cluster of n strings will depend on its geometry (in
fact only on its total area). The numerical calculations
look easier now, since one has to identify individual clus-
ters only.

3.3 Various types of hadrons

In reality various types of hadrons are produced. In the
cumulative region the relevant particles are nucleons and
pions, the production rates of the rest being much smaller.
The multiplicity densities for each sort of hadrons will ob-
viously depend on the flavour contents of the fused strings,
that is, of the number of quark and diquark strings in it.

Consider the case of complete overlapping of n strings.
Let the string be composed of k quarks and n − k di-
quarks. We shall then have distributions τ (h)

nk for the pro-
duced hadrons h. Obviously the multiplicity and momen-
tum sum rules are now insufficient to determine each of
the distribution τ

(h)
nk separately. A possibility to overcome

this difficulty may consist in using the Regge phenomenol-
ogy or quark power counting rules to determine the be-
haviour of the distribution near its kinematical thresh-
old x → xn. However for multiquark configurations this
seems too complicated and insecure, since this behaviour
is then governed by Regge cuts rather than poles. There-
fore we shall adopt a simpler approach. In our picture the
observed hadron is produced when the parton (quark or
diquark) emerging from string decay neutralizes its colour
by picking up an appropriate parton from the vacuum. In
this way a quark may go over into a pion if it picks up
an antiquark or into a nucleon if it picks up two quarks.
The quark counting rules tell us that the behaviour at the
threshold in the second case will have two extra powers
of (x − xn). Likewise a diquark may go either into a nu-
cleon picking up a third quark or into two pions picking
up two antiquarks, with a probability smaller by a fac-
tor (x − xn)2 at the threshold. Since it is the threshold
behaviour which is responsible for the cumulative parti-
cles, we shall assume, as a first approximation, that the
quarks go over exclusively into pions and diquarks go over
exclusively into nucleons. As a result, the ratio of pro-
duced pions to nucleons will be equal to that of quarks to
diquarks, that is, k/(n − k).

This means that we may proceed as before assuming
one sort of hadrons and in the end just multiply the ob-
tained distributions τnk by the appropriate factors

τ
(h)
nk (x) = ξ

(h)
nk τmk(x), (33)

where for the pions and nucleons

ξ
(π)
nk =

k

n
, ξ

(N)
nk =

n − k

n
. (34)

Obviously this implies that we have to track the flavour
contents of the fused strings in the Monte Carlo simula-
tions.

4 Numerical results

We shall study different scenarios for the interaction be-
tween colour strings. We start with the scenario of string
fusion, when as soon as the strings touch each other they
fuse into a new one with a higher colour and of the same
form and transverse area as the initial ones. This corre-
sponds to the maximal interaction between strings, which
change not only their colour and momentum but also its
geometrical form. This scenario was proposed and realized
in a fully developed Monte Carlo algorithm in [2]. Its ap-
plication to particle production has given very satisfactory
results for energies ranging from SPS to RHIC [10].

In this case we do not have to bother about partial
overlapping, so that (20) can be used directly to deter-
mine the multiplicity of a string with an arbitrary high
colour. The distribution of the strings in colour can be de-
duced analytically for high enough string densities in this
scenario [11]. It is governed by the dimensionless parame-
ter

η =
NC1

C
, (35)

where C is the total transverse area of the interaction
and N the total number of strings. For a given η and
large N one finds that the strings are distributed in colour
according to the Poisson law:

〈νn〉 = Ne−ηηn−1/n!. (36)

So with string fusion we find the total multiplicity as

dµ
dy

= N
∑

n

1
n!

e−ηηn−1αn

(
1 − x

xn

)αn−1

, (37)

where the sum goes over all colours n such that x < xn.
The parameters αn are to be calculated from (20) and the
string momentum xn and its flavour composition (number
of quarks and diquarks) has to be found by Monte Carlo
simulations using the distributions (5) and (6).

The multiplicity results are very weakly dependent on
the energy through the value of xmin (see (3)), and this de-
pendence is practically absent for energies above 200GeV.
Our results for dµ/dy per string at the LHC energy 6TeV
(Y = 17.5) for different values of η are presented in Fig. 1
and 2 for pions and nucleons respectively.
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Fig. 1. Multiplicity density dµ/dy per string for pions in the
fusion scenario for Y = 17.5. The curves from bottom upwards
correspond to η = 0.25, 0.5, 1, 2, 3 and 4
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Fig. 2. Same as Fig. 1 for nucleons

In an alternative scenario, which lies at the basis of the
percolation phenomenon (“percolation scenario”) strings
are allowed to overlap partially and form clusters of dif-
ferent forms and number of simple strings. The total mul-
tiplicity will then depend on the chosen model of the dis-
tribution of colour and momentum within a given cluster,
as explained in the previous section.

If a cluster is assumed to be split in various ministrings
formed by different separated overlaps, the total multiplic-
ity will be a sum of contributions from all ministrings

dµ
dy

(x) =
∑
n,i

τn,i

(
x

x
(i)
n

)
, (38)

where for z < 1 τn,i(z) is given by (12) with parameters
αn,i determined from (26) and for z > 1 τn,i(z) = 0. If a
cluster acts as a single string with an averaged distribu-
tion τC(z) as described in the previous section, then one
has the same expression (38), where the sum is now ex-
tended over all clusters. The parameters αC are now to
be determined from (32). In both cases analytical calcula-
tions are not possible and one has to recur to Monte Carlo
simulations. They simulate the geometrical distribution of
strings in the interaction area and their x and flavour con-
tents. Afterwards one has to identify all overlaps of a given
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1 1.5 2 2.5 3
x

pions from ministrings

 

dµ
/d

y

Fig. 3. Multiplicity density dµ/dy per string for pions in the
percolation scenario with ministrings (overlaps) as emitters at
Y = 17.5. At x = 2 the curves from bottom upwards corre-
spond to η = 0.25, 0.5, 1, 4, 3 and 2
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nucleons from ministrings

 

dµ
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y

Fig. 4. Same as Fig. 3 for nucleons. At x = 2.5 the curves from
bottom upwards correspond to η = 0.25, 0.5, 4, 1, 3 and 2

number of strings or clusters of strings and their areas. The
results (per string) for the two possibilities are presented
in Figs. 3 and 4, and 5 and 6, respectively.

One observes that the probability of cumulative pro-
duction strongly depends on the chosen scenario.

The fusion scenario leads to higher cumulative particle
production rates, which also fall with x much more slowly
than in the percolation scenario. The x-dependence of the
rates for pion production is rather well described by the
standard parametrization

dµ
dy

= Ce−αx, (39)

where the slope α steadily falls with η from α � 4 at
η = 0.25 down to α � 1.5 at η = 4. At fixed x the rates
steadily grow with η. For the nucleon production and low
values of η ≤ 1 the parametrization (39) holds only for
the regions 1 < x < 1.7 and 2 < x < 2.5 where α ∼ 2.
In between and at x > 2.5 the slopes rise up to 4 ÷ 6
indicating an abrupt change of x-behaviour at x � 2 which
gradually disappears with the growth of η. At η ≥ 2 the
x-dependence is roughly described by (39) with the same
slope ∼ 1.5 as for pions.
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Fig. 5. Multiplicity density dµ/dy per string for pions in the
percolation scenario with clusters as emitters at Y = 17.5. At
x = 2 the curves from bottom upwards correspond to η = 2,
0.25, 1, 0.5, 3 and 4
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Fig. 6. Same as Fig. 5 for nucleons. At x = 2 the curves from
bottom upwards correspond to η = 2, 0.25, 1, 0.5, 3 and 4

In the percolation scenario at relatively small values
of η < 1 the results are qualitatively independent of the
choice of emitters. With both clusters and ministrings one
finds the rates which fall with x much faster than in string
fusion. Again for pions the parametrization (39) holds,
with α slowly falling with η from ∼ 9 at η = 0.25 to
∼ 6.5 at η = 1 for ministrings as emitters and from ∼ 9.5
at η = 0.25 to ∼ 8.5 at η = 1 for clusters. For nucleon
production from ministrings a change of behaviour in the
vicinity of x = 2 is again observed. With clusters this
change is hardly perceptible. Outside this region the slopes
are somewhat smaller than for pions: 4÷7 for ministrings
and 7 ÷ 9 for clusters.

At higher values of η, beyond the percolation thresh-
old ηc ∼ 1.1 ÷ 1.3, the behaviour of the production rate
begins to depend crucially on the choice of emitters. With
clusters as emitters a radical change is observed and the
production rate becomes close to the fusion scenario up
to a certain value of x when the rate abruptly goes to
zero. The critical value of x grows with η and, as seen
from Fig. 3, lies around 1.5 at η = 2 and at around 2.5 at
η = 4. On the other hand, the ministrings scenario does
not show such an abrupt change of behaviour, the rates

being well described by (39) with a slope 4 ∼ 5 both for
pions and nucleons.

To pass to physical inclusive cross-sections one has to
know the number of strings N in a particular reaction.
This number is obtained by multiplying their number in
the nucleon (two) by the number of collisions ν.

In hA collisions in the nuclear fragmentation region
one has

ν =
Aσpp

σpA
. (40)

The interaction area is of the order σpp, so that (35) gives

η = 2
AC1

σpA
. (41)

According to our previous results [2,3,8] C1 = 1.26mb. To
find the inclusive cross-section one has to multiply dµ/dy
per string by N and σpA and divide by the number of
isospin components, which gives the inclusive cross-sec-
tion per nucleon for positive pions and protons

1
A

dσ(π+)
pA

dy
=

2
3
σpp

dµ(π)

dy
,

1
A

dσ(p)
pA

dy
= σpp

dµ(N)

dy
. (42)

In AB interactions the number of collisions depends
on the centrality. In minimum bias collisions, similar to
(40),

ν =
ABσpp

σAB
. (43)

The interaction area is the average overlap area. For B <<
A it is roughly equal to σpB . For A = B it is approximately
equal to 0.78R2

A. The inclusive cross-section per nucleon
(i.e. divided by AB) will be given by the same (42), the
only difference being that the value of η should be calcu-
lated with (43) and so substantially higher than in hA col-
lisons. One can also easily deduce corresponding formulas
for the cross-sections in collisions with a given centrality,
that is, at a given impact parameter b (see [11]).

From (40)–(43) we conclude that the cumulative pro-
duction rates per nucleon are predicted to depend on the
single parameter η, which combines the rest of the A-
dependence and the dependence on energy and centrality.
In the fusion and ministrings scenarios at practically all η
and in the cluster scenario at η < 1 this leads to a univer-
sal form of the x-dependence, since its slope very weakly
depends on η. The overall A-dependence, apart from the
factor AB, includes the effect of the growth of η with AB.
It leads to an additional growth with AB, although it may
be quite weak (at η < 1 in the cluster scenario; see Figs. 5
and 6).

Passing to the comparison of our predictions with the
experimental data we have first to stress that all the ex-
isting data refer to the hadron nucleus collisions at very
moderate c.m. energies of 27.5GeV and below. The strings
which are created at these energies have mostly a rather
small length in rapidity, so that the effects of the energy
division between strings, neglected in our approach, be-
come important. This implies that our picture can de-
scribe these experiments only rather crudely.
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Still, forgetting for the moment the absolute magni-
tudes of the cross-sections, we conclude from Figs. 1–6 that
the x-dependence is correctly reproduced in the two per-
colation scenarios, which at small η corresponding to these
energies give the inclusive cross-section of the form (39)
with the slope α ∼ 6 ÷ 7 in complete agreement with the
experimental values. It is remarkable that this value of
the slope is obtained practically with no parameters, on a
pure geometrical basis. The string fusion scenario, in con-
trast, leads to much smaller values of α which definitely
contradict the experimental data. So our first conclusion
is that it looks as if the experimental cumulative cross-
section favour the percolation scenarios.

Passing to the absolute values, we note that in [4,5]
the double differential cross-sections in momentum and
angle are given. To convert them into dσpA/dy we fitted
the data with

1
A

dσA(x, k2
T)

dyd2k
= Ce−αexx−βk2

T . (44)

For positive pions produced on Ta (A = 181) at s1/2 =
27.5 and x > 1 we get

αex = 7.15, β = 1.72 and C = 124/(mb/(GeV/c))2.

The resulting “experimental” dσA/Ady is a pure expo-
nential in x with slope αex and is shown as a straight line
in Fig. 7. In the same figure we show our predictions for
this case (η = 0.343) in the percolation scenarios choosing
ministrings or clusters as emitters. One observes that the
agreement is quite reasonable, especially in view of the
mentioned difficulties in applying our picture.

As to the A-dependence, the two scenarios give slightly
different predictions. In the ministring scenario, at rela-
tively small η relevant for the experiment, the rate
is roughly proportional to η (Fig. 3). So the overall A-
dependence is predicted to be A4/3. In the cluster scenario
the rates are practically independent of η and the result-
ing overall A-dependence is just linear. The experimental
data [5] seem to favour this last behaviour, although they
are somewhat inconclusive in this respect (it was not pos-
sible to fit the pion data at all momenta and angles by
a simple power law Aα). Thus our conclusion is that the
two scenarios of ministrings and clusters describe the pion
data of [5] quite satisfactorily.

On the other hand, the cross-sections for the protons
are found to be two orders of magnitudes smaller than the
experimental ones, which can be described by the same
expression (45) with α = 5.7, β = 2.4 and C = 28400 in
the same units. So our picture definitely does not work for
the protons, at least at the energies corresponding to the
experiment [4].

Guided by these results, we can make predictions for
the cumulative π+ production at energies corresponding
to RHIC and LHC. Taking the inelastic cross-section σpp

equal to 39 and 77mb at RHIC and LHC energies re-
spectively, we find for Pb–Pb minimum bias collisions the
corresponding values of η equal to 2.0 and 4.0. So, us-
ing (42), we can read our predictions for the inclusive π+
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Fig. 7. Comparison of the inclusive cross-sections for the pro-
duction of cumulative π+ on Ta at 27.5GeV extracted from the
experimental data [5] (straight line) and predictions from the
percolation scenario with ministrings (lower curve at x = 1)
and clusters (upper curve at x = 1) as emitters

cross-section per nucleon (in mb) directly from Figs. 3 and
5 multiplying dµ/dy at η = 2 by 33 for RHIC and at η = 4
by 43 for LHC.

One sees that up to certain maximal x (∼ 1.6 at RHIC
energy) the cross-sections with clusters as emitters are
substantially higher than with ministrings. The difference
reaches two orders of magnitude at 1.5 < x < 2.5 for LHC
energy. Beyond this maximal x the cross-section with clus-
ters abruptly goes to zero. Thus the study of cumulative
pion production at higher energies and atomic number of
participants can well distinguish between these two mech-
anisms.

5 Discussion

We have studied the cumulative particle production due
to the interaction of colour strings stretched between the
partons in the colliding hadrons and nuclei. The results
obtained by Monte Carlo calculations show that the pro-
duction rate strongly depends on the chosen model of
the string interaction. The rate is maximal and falls with
x with the minimal slope in the string fusion scenario
in which strings fuse into the same form and transverse
area, which corresponds to the maximal interaction be-
tween strings. In the percolation scenario, allowing for
partial overlaps, the rate is considerably smaller. This is,
of course, to be expected, since a fusing string in the same
area allows one to raise the momentum much more effec-
tively than with partial overlapping. The slope found in
the percolation scenario agrees well with the experimental
data at moderate energies.

The absolute magnitudes of the found production rates
also agree well with the existing experimental data for pi-
ons. However for the protons the obtained rates are far too
small. This testifies that cumulative protons are mostly
produced via a mechanism different from colour string in-
teractions. The fully developed Monte Carlo simulations
with only two strings fused, which were performed in [3],
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indicate that this mechanism is related to the interaction
between nucleons as a whole. This corresponds to tak-
ing into account a part of the colour states of the fused
string in which a certain number of quark triplets are in a
colourless state. In the approach employed in the present
calculations the colour summation is done on the average
and such states are neglected (more or less in agreement
with the large number of colours limit, which lies at the
basis of colour string models [6]).

From the start our approach is aimed at very high en-
ergies, where the underlying colour string picture can be
applicable. There is a rich collection of cumulative data at
quite low energies (up to 12GeV in the lab). It is obvious
that our treatment cannot be pushed down to such low
energies. However the low energy data reveal certain scal-
ing features: the behaviour of the cumulative production
rates in x and A is found to be crudely similar to the one
at much higher energies in [4,5]. One may then ask why
this is so, although the production mechanism evidently
changes with the growth of energy. We do not pretend
to know the answer to this question. However we note
that this feature is found in different strong interaction
phenomena. For instance, the Glauber form for the nu-
clear scattering amplitudes seems to be valid both at very
moderate and very high energies, although the underly-
ing dynamics is very different. In our case, we may sup-
pose that at low energies colour strings smoothly pass into
3-dimensional hadronic clusters, whose overlapping and
percolation produces cumulative particles in close anal-
ogy with our 2-dimensional high-energy picture, in which
longitudinal and transverse dynamics are separated and
quarks serve as the natural degrees of freedom. Then a
certain similarity in the behaviour of the production rates
might be understandable. In fact cluster formation was
considered as a possible source of cumulative particle since
long ago (see [1]).

The inclusive cross-sections for cumulative production
are found to grow with energy mostly due to the growth
of the proton–proton inelastic cross-section σpp. They also
grow with the atomic number of the participants. Both
effects result in the growth of the percolation parameter
η. At the RHIC and LHC energies predictions with min-
istrings and clusters are very different. With ministrings

the cross-sections continue to behave as at moderate en-
ergies with practically the same slope. With clusters the
cross-sections are much higher and fall very slowly with x
(with α ∼ 1.5 ÷ 2) up to a certain maximal x after which
they abruptly fall. This difference in absolute magnitude
and x-behaviour opens a way to distinguish between the
two percolation mechanisms by experiment.
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